Development of β Type Ti23Mo-45S5 Bioglass Nanocomposites for Dental Applications

نویسندگان

  • Karolina Jurczyk
  • Andrzej Miklaszewski
  • Mieczyslawa U. Jurczyk
  • Mieczyslaw Jurczyk
چکیده

Titanium β-type alloys attract attention as biomaterials for dental applications. The aim of this work was the synthesis of nanostructured β type Ti23Mo-x wt % 45S5 Bioglass (x = 0, 3 and 10) composites by mechanical alloying and powder metallurgy methods and their characterization. The crystallization of the amorphous material upon annealing led to the formation of a nanostructured β type Ti23Mo alloy with a grain size of approximately 40 nm. With the increase of the 45S5 Bioglass contents in Ti23Mo, nanocomposite increase of the α-phase is noticeable. The electrochemical treatment in phosphoric acid electrolyte resulted in a porous surface, followed by bioactive ceramic Ca-P deposition. Corrosion resistance potentiodynamic testing in Ringer solution at 37 °C showed a positive effect of porosity and Ca-P deposition on nanostructured Ti23Mo 3 wt % 45S5 Bioglass nanocomposite. The contact angles of glycerol on the nanostructured Ti23Mo alloy were determined and show visible decrease for bulk Ti23Mo 3 wt % 45S5 Bioglass and etched Ti23Mo 3 wt % 45S5 Bioglass nanocomposites. In vitro tests culture of normal human osteoblast cells showed very good cell proliferation, colonization, and multilayering. The present study demonstrated that porous Ti23Mo 3 wt % 45S5 Bioglass nanocomposite is a promising biomaterial for bone tissue engineering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating the Vascularization of Tissue-Engineered Bone Constructs Using Dental Pulp Cells and 45S5 Bioglass® Scaffolds

Identification of a suitable cell source combined with an appropriate 3D scaffold is an essential prerequisite for successful engineering of skeletal tissues. Both osteogenesis and angiogenesis are key processes for bone regeneration. This study investigated the vascularization potential of a novel combination of human dental pulp stromal cells (HDPSCs) with 45S5 Bioglass® scaffolds for tissue-...

متن کامل

Nanostructured Titanium-10 wt% 45S5 Bioglass-Ag Composite Foams for Medical Applications

The article presents an investigation on the effectiveness of nanostructured titanium-10 wt% 45S5 Bioglass-1 wt% Ag composite foams as a novel class of antibacterial materials for medical applications. The Ti-based composite foams were prepared by the combination of mechanical alloying and a "space-holder" sintering process. In the first step, the Ti-10 wt% 45S5 Bioglass-1 wt% Ag powder synthes...

متن کامل

The Use of Carbon Nanotubes to Reinforce 45S5 Bioglass-Based Scaffolds for Tissue Engineering Applications

Bioglass has been used for bone-filling material in bone tissue engineering, but its lean mechanical strength limits its applications in load-bearing positions. Carbon nanotubes (CNTs), with their high aspect ratio and excellent mechanical properties, have the potential to strengthen and toughen bioactive glass material without offsetting its bioactivity. Therefore, in this research, multiwall ...

متن کامل

Mechanical properties of electrophoretically deposited 45S5 bioglass-graphene oxide composite coatings

Bioglass-graphene oxide composites can be served as a high-potential candidate for biomedical applications due to its specific mechanical properties. In this study, the 45S5 bioactive glass (BG) - graphene oxide (GO) composite containing 2 wt. % GO was coated on titanium alloy via electrophoretic deposition process (EPD). The synthesized GO was incorporated into BG coating to improve the mechan...

متن کامل

Laser Improves 45s5 Bioglass Interaction with Dentin 2 Co on Behalf Of: International and American Associations for Dental Research

Bioglass 45S5 is a bioactive glass that can create a layer of calcium-phosphate crystals on mineralized hard tissues. In this study, 45S5 bioglass was mixed with phosphoric acid and irradiated with CO2 laser and examined as a possible aid in the treatment of dentin hypersensitivity. The dentinal surface modified by the aforementioned technique was chemically and micro-morphologically examined w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2015